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Abstract

A series of kinetic Monte Carlo computer experiments performed on idealized systems clearly reveals the dramatic

effects of 1-D migration of self-interstitial atom (SIA) crowdion clusters on the stability of void lattices. In the presence

of migrating SIA, void lattices are shown to be unstable under pure 3-D SIA migration, but they are extremely stable,

relative to random arrays of voids, under 1-D SIA migration. Void lattices remain stable even under the condition of

fairly frequent changes in the Burgers vectors of the 1-D migrating SIA clusters. Clusters with average 1-D path

segments having lengths on the order of the nearest neighbor distance in the void lattice can maintain the stability of

void lattices.

� 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Void lattices in irradiated metals were first observed

about 30 years ago [1], and while they have been the

subject of many theoretical and experimental studies

since then, no definitive theory of void lattice formation

exists. Reviews of some earlier theoretical ideas are given

in Refs. [2,3], and they are primarily based on some form

of anisotropic mass transport as outlined by Foreman

[4]. Other theories based on elastic interactions of voids

or spatial fluctuation of defects have been generally dis-

counted because they cannot explicitly predict the for-

mation of the void super-lattice, i.e. that the void lattice

has the same lattice structure of the metal and is aligned

with the crystal lattice. Theories based on anisotropic

diffusion of defects can account for the requisite super-

lattice, but, so far, their premises are founded on un-

proven defect migration properties, usually associated

with the migration of single self-interstitial atoms (SIA).

A mechanism proposed by Evans [5] requires planar

anisotropy of dumbbell interstitial diffusion, while the

theory of Woo and Frank [3] is based on 1-D migration

of single crowdions over distances on the order of the

void lattice spacing. Experimental evidence of these an-

isotropies in the diffusion of SIA defects is circumstantial

at best, and recent molecular dynamics (MD) simula-

tions offer no proof that single SIA have such migration

properties [6]. On the other hand, recent MD simulations

do show that stable clusters of crowdions are produced

directly in cascades and that they can migrate one-

dimensionally as highly glissile dislocation loops for

significant distances [7,8]. Furthermore, there is evidence

that one-dimensionally migrating SIA (crowdion) clus-

ters can be made to occasionally change direction

(change Burgers vector) by thermal activation or by in-

teractions with other microstructural elements [7].

1-D diffusion of crowdion clusters was adopted as a

major premise of the production bias model (PBM) of

void swelling [9], while subsequent inclusion in the PBM

of the effects of the changes in Burgers vectors on the

defect reaction kinetics of crowdion clusters has been

shown to be quite successful in describing many aspects of

microstructure evolution under cascade-producing irra-

diation [10]. Thus, one-dimensionally migrating crow-

dion clusters with Burgers vector changes have become

central to the PBM. The rationale for the present in-

vestigation is that, since the PBM provides a reasonable
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explanation of void swelling, then its basic premises

should also be compatible with the formation of void

lattices. Thus, the 1-D migration of crowdion clusters

with occasional Burgers vector changes is examined here

as a necessary condition for the formation of a void

lattice.

2. Kinetic Monte Carlo experiments

Kinetic Monte Carlo computer thought experiments

were performed with a simple model for the interactions

of vacancy and SIA defects with voids in which the av-

erage length of the 1-D migration path segments of SIA

clusters is the variable quantity. A cubic test cell con-

taining an atomic-scale, face-centered cubic lattice was

used. The cell contained spherical voids and mobile de-

fect clusters, each defect being associated with a lattice

site of the underlying crystal structure. The mobile

clusters consisted of identically sized crowdion and va-

cancy clusters. Each crowdion cluster migrated in a 1-D

random walk along a randomly chosen close-packed

direction (h110i) on the fcc crystal lattice for exactly ndc
jumps before randomly choosing the close-packed di-

rection for its next 1-D random walk of ndc jumps. The
vacancy clusters migrated by 3-D random walks on the

fcc crystal lattice. The vacancy and SIA clusters did not

interact among themselves, i.e., there was no clustering

or annihilation. The SIA and vacancy clusters represent

the defects that interact with the voids and do not in-

teract with each other or other sinks (except �grain
boundaries�, see below). A mobile defect was absorbed
into a void if their separation was less than or equal to

the sum of their radii. Voids increased or decreased in

size depending on their interactions with the vacancy and

SIA clusters. An additional feature of the interaction of

SIA clusters with the voids was that, upon interaction,

the center of gravity of the void was moved according to

an algorithm depending on the positions of the void and

the SIA cluster at contact. It was assumed that vacancies

arrived at the void uniformly from all directions and

made no net change in the void�s center of gravity. For
the studies reported on here, the movement of the center

of gravity of voids was not an important effect.

The test cell contained about 7� 106 crystal lattice
sites. The void lattices studied in this volume typically

consisted of 256 voids having an fcc lattice constant

A ¼ 30a0, where a0 is the crystal lattice parameter. The
initial void radii were equal and of size R ¼ 3:5a0, giving
a ratio A=R ¼ 8:6, which is within the range 5–15 of
observed values [2]. Tens of thousands of mobile defect

clusters were introduced into the volume at random

positions, and each was jumped sequentially until a re-

action occurred.

Periodic boundaries were applied to the test cell such

that a mobile defect jumping out of the cell was assumed

to reenter the cell at the same position on the opposite

face. The boundaries were not �infinitely periodic�. That
is, any defect that traversed the complete cell a given

number of times without interacting with a void was

assumed to be absorbed in some �other� sink and was
removed from the system. Because of the geometry of

this condition, the other sink is most representative of a

grain boundary. Periodicity was required so that voids

near the edges of the cell would see a flux of defects from

all directions. However, allowing infinitely periodic

boundaries, especially when ndc is very large, can result
in extremely long computer runs. The limit of four

complete traverses was found to give a reasonable bal-

ance between convenient running times and sufficient

sampling of the volume by defects. Undoubtedly, the

results are sensitive to the number of traverses allowed,

and this parameter should be studied rigorously in

future computer experiments.

The KMC modeling was used to investigate the role

of 1-D migration and the effects of Burgers vector

changes on the �shadow effect�, whereby voids aligned
along close-packed directions shield each other from

1-D migrating SIA defects, as postulated by Foreman [4]

as a mechanism to select or preserve a void lattice.

Consider voids aligned in a lattice having the same

symmetry as the crystal (as depicted in two dimensions

in Fig. 1) and the imaginary cylindrical volumes con-

necting the voids along the close-packed directions.

Because each void is in the �shadow� of the voids on ei-
ther side of it along the close-packed directions, only the

Fig. 1. 2-D schematic diagram of a void lattice depicting the

cylindrical volumes lying along close-packed directions between

voids that contain the only 1-D migrating crowdion clusters

that can interact with the voids (e.g. the cylinder at the upper

left containing the double headed arrow). The shadowing effect

preserves the voids at the intersection of the cylinders, while the

voids not in the shadows of the lattice voids are exposed to a

much higher flux of SIA crowdions and eventually disappear.

H.L. Heinisch, B.N. Singh / Journal of Nuclear Materials 307–311 (2002) 876–880 877



crowdion clusters within the cylinders and traveling in

the directions of the cylinder axes can interact with the

voids in the lattice. Any voids not at a void lattice site

will be subjected to much larger fluxes of crowdion

clusters and have much lower probability of survival.

The strength of the shadow effect was investigated in

a series of KMC experiments. A lattice of 256 uniform-

sized voids in the test cell described above was supple-

mented by 256 additional voids of the same size placed

at random positions within the cell. The cell was then

�irradiated� with 50 000 crowdion clusters placed ran-
domly in the cell and executing 1-D random walks along

the close-packed directions, each for ndc jumps before
selecting a new Burgers vector direction. Each void

contains vacancies equivalent to the SIAs in 100 crow-

dion clusters. There were no mobile vacancy clusters in

this experiment. Runs were done with different values of

ndc. Fig. 2 shows the initial configuration looking down
the [0 0 1] direction of the cubic volume. Fig. 3 shows the

same view after irradiation by the crowdion clusters with

ndc ¼ 1 jump, the condition for �pure 3-D� migration.
The lattice voids and random voids were attacked

equally by the crowdion clusters.

Figs. 4–6 show the results of the shadowing experi-

ments for ndc ¼ 500 jumps (L ¼ 0:85), ndc ¼ 1000 jumps
(L ¼ 1:2), and ndc ¼ 5000 jumps (L ¼ 2:7), respectively,
where L is the average 1-D path length for ndc jumps of
the crowdion clusters in units of the nearest neighbor

distance in the void lattice. For the average 1-D path

length of L ¼ 2:7 nearest neighbor distances the random
voids were annihilated and the lattice voids survived

nearly intact. For L ¼ 1:2 nearest neighbor distances the
shadowing effect was strong, but somewhat diminished

relative to the case with larger L. Even when L was less

than the void lattice nearest neighbor distance, L ¼ 0:85,
the lattice voids overwhelmingly survived relative to the

random voids, although many of the lattice voids be-

came quite small. In the more realistic situation where

vacancies are constantly replenishing the voids, it is clear
Fig. 2. Looking down the [0 0 1] axis of a cubic cell containing

256 voids in a lattice plus 256 randomly placed voids.

Fig. 3. Looking down the [0 0 1] axis of a cubic cell containing

256 voids in a lattice plus 256 randomly placed voids after ir-

radiation by 50 000 interstitial clusters migrating in 3-D

(ndc ¼ 1) on the crystal lattice. The sizes of the dots are scaled to
the sizes of the remaining voids.

Fig. 4. Looking down the [0 0 1] axis of a cubic cell containing

256 voids in a lattice plus 256 randomly placed voids after ir-

radiation by 50 000 interstitial clusters migrating on the crystal

lattice in 1-D segments of average length L ¼ 0:85 nearest
neighbor distance of the void lattice (ndc ¼ 500). The sizes of the
dots are scaled to the sizes of the remaining voids.
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that the void lattice voids will survive relative to the

random voids even at L values on the order of the void

lattice spacing.

Experiments were also performed to test the size

stability, whether the voids grow or shrink, as a function

of the value of L. A lattice of 256 voids in a cell, as

described above, was irradiated with crowdion clusters

and an equal number of vacancies. If, on average, equal

numbers of vacancies and SIA interact with the voids in

the lattice, then, on average, the void size will remain

stable. Thus, for an established void lattice, irradiation

by equal concentrations of vacancies and SIA crowdi-

ons, both migrating in 3-D (ndc ¼ 1 for the crowdions),
will result in maintaining a stable void size. When L

increases, the fraction of SIA going to voids decreases,

as shown in Fig. 7. For L ¼ 1:2 nearest neighbor dis-
tances (ndc ¼ 1000 jumps), about 99.4% of the crowdi-
ons go to voids, while at L ¼ 1:7 (ndc ¼ 2000 jumps) the
fraction of crowdions absorbed is about 96.5%. The

fraction of crowdions absorbed into voids drops to the

pure 1-D limit, 14.8% for this void lattice, at about

L ¼ 20. This limiting value corresponds to the fraction
of crowdions contained in the cylinders connecting the

voids along close-packed directions that can interact

with voids, as determined simply by geometry.

3. Conclusions

Based on the results of these studies, the shadow ef-

fect is very strong, and it does not require 1-D path

lengths significantly greater than the void lattice spacing

for crowdion clusters to be effective in selecting a void

lattice, relative to random voids. Of course, the shadow

effect is much stronger if the crowdion clusters have

longer 1-D path lengths, but under those conditions the

fraction of crowdions available for interacting with the

voids becomes much smaller. To maintain the void size

under the long 1-D path length conditions requires that

the available SIA in crowdion clusters must outnumber

Fig. 5. Looking down the [0 0 1] axis of a cubic cell containing

256 voids in a lattice plus 256 randomly placed voids after

irradiation by 50 000 interstitial clusters migrating on the crystal

lattice in 1-D segments of average length L ¼ 1:2 nearest
neighbor distance of the void lattice (ndc ¼ 1000). The sizes of
the dots are scaled to the sizes of the remaining voids.

Fig. 6. Looking down the [0 0 1] axis of a cubic cell containing

256 voids in a lattice plus 256 randomly placed voids after ir-

radiation by 50 000 interstitial clusters migrating on the crystal

lattice in 1-D segments of average length L ¼ 2:7 nearest
neighbor distance of the void lattice (ndc ¼ 5000). The sizes of
the dots are scaled to the sizes of the remaining voids.

Fig. 7. Crowdion cluster absorption into lattice voids as a

function of the average length L of their 1-D path segments

given in units of the void lattice spacing.
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the available 3-D migrating vacancies by a large factor

(up to a factor of 7 in the example here). Also, under the

actual conditions in real materials, crowdion clusters

with very long 1-D path lengths may be rare. Thus, it

should be possible to maintain a void lattice when the

average 1-D path lengths of a significant fraction of

crowdion clusters is on the order of the void lattice

spacing. However, the range of 1-D path lengths re-

quired for void lattice formation have not yet been de-

termined.
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